JLOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

B.Sc., DEGREE EXAMINATION – **MATHEMATICS**

SIXTH SEMESTER - NOVEMBER 2013

MT 6605 – NUMERICAL METHODS

Date : 11/11/2013 Time : 1:00 - 4:00 Dept. No.

Max.: 100 Marks

<u>PART – A</u>

Answer ALL questions:

- 1. When Gauss elimination method is used to solve AX=B, A is transferred in a _____ matrix.
- 2. Under what condition can we use Cramer's rule of solving simultaneous equations?
- 3. What is the order of convergence of Newton-Raphson method?
- 4. Which method is also called as method of chords?
- 5. Write the Newton's Backward interpolation formula.
- 6. Construct a divided difference table for the following data:
 - *x*: 2 4 9 10
 - *y*: 4 56 711 980
- 7. Bessel's interpolation formula gives better results when u lies between _____
- 8. Laplace-Everette's formula truncated after _____ differences.
- 9. For What degree polynomial, simpson's 1/3 rule gives exact result?
- 10. Write the formula for Rungekutta method of IV order.

<u>PART – B</u>

Answer any FIVE questions:

11. Solve the system by Gauss-Elimination method

2x + 3y - z = 5, 4x + 4y - 3z = 3 and 2x - 3y + 2z = 2.

- 12. Solve for x from $\cos x xe^x = 0$ by successive approximation method, perform upto five iterations.
- 13. Using bisection method, find the negative root of $x^3 4x + 9 = 0$.
- 14. Given that f(0) = 8, f(1) = 68, and f(5) = 123, find f(2).
- 15. Find a cubic polynomial which takes the following set of values (0,1), (1, 2), (2,1) and (3, 10).
- 16. From the following table:

<i>x</i> :	20	25	30	35	40
f(x):	11.4699	12.7834	13.7648	14.4982	15.0463

Find f(34) using Everett's formula.

(5 x 8 = 40 marks)

(10 x 2 = 20 marks)

17. Write a C program to find the value of $\int_{1}^{2} \frac{1}{x} dx$ using Simpson's 1/3 rule.

18. Solve $y' + \frac{2x}{y} = y$, y(0) = 1 in the range $0 \le x \le 0.2$ using modified Euler's method by taking h = 0.1.

<u> PART – C</u>

Answer any TWO questions:

 $(2 \times 20 = 40 \text{ marks})$

- 19. Solve, by Gauss-Seidel method, the following system
 - a) 28x + 4y z = 32, x + 3y + 10z = 24, 2x + 17y + 4z = 35.
 - b) Find an iterative formula to find the reciprocal of a given number N and hence find the value of $\frac{1}{10}$.

20. a) Using Lagrange's formula, prove $y_1 = y_3 - 0.3(y_5 - y_{-3}) + 0.2(y_{-3} - y_{-5})$ nearly.

b) From the following table, using Stirling's formula, estimate the value of tan16°.

<i>x</i> :	0°	5°	10°	15°	20°	25°	30°
tanx:	0	0.0875	0.1763	0.2679	0.3640	0.4663	0.5774

21. a) Find the first and second derivative of the function tabulated below at x=0.6x: 0.4 0.5 0.6 0.7 0.8 y: 1.5836 1.7974 2.0442 2.3275 2.6511

b) Derive Simpson's 3/8 rule for numerical Integration.

22. a) Apply Simpson's 1/3 rule, Compute $\int_{2}^{1.4} (\sin x - \log e^{x+e^x}) dx$, by taking h = 0.1.

b) Using Runge-Kutta method of IV order solve $y' = \frac{y^2 - x^2}{y^2 + x^2}$ with y(0) = 1 at x = 0.2.

\$\$\$\$\$\$\$