B.Sc., DEGREE EXAMINATION - MATHEMATICS

SIXTH SEMESTER - NOVEMBER 2013
MT 6605 - NUMERICAL METHODS

Date: 11/11/2013
Dept. No. \square Max. : 100 Marks
Time : 1:00-4:00

$\underline{\text { PART - A }}$

Answer ALL questions:

1. When Gauss elimination method is used to solve $\mathrm{AX}=\mathrm{B}, \mathrm{A}$ is transferred in a \qquad matrix.
2. Under what condition can we use Cramer's rule of solving simultaneous equations?
3. What is the order of convergence of Newton-Raphson method?
4. Which method is also called as method of chords?
5. Write the Newton's Backward interpolation formula.
6. Construct a divided difference table for the following data:

$x:$	2	4	9	10
$y:$	4	56	711	980

7. Bessel's interpolation formula gives better results when u lies between \qquad .
8. Laplace-Everette's formula truncated after \qquad differences.
9. For What degree polynomial, simpson's $1 / 3$ rule gives exact result?
10. Write the formula for Rungekutta method of IV order.

$\underline{\text { PART - B }}$

Answer any FIVE questions:
($5 \times 8=40$ marks)
11. Solve the system by Gauss-Elimination method

$$
2 x+3 y-z=5,4 x+4 y-3 z=3 \text { and } 2 x-3 y+2 z=2 .
$$

12. Solve for x from $\cos x-x e^{x}=0$ by successive approximation method, perform upto five iterations.
13. Using bisection method, find the negative root of $x^{3}-4 x+9=0$.
14. Given that $f(0)=8, f(1)=68$, and $f(5)=123$, find $f(2)$.
15. Find a cubic polynomial which takes the following set of values $(0,1),(1,2),(2,1)$ and $(3,10)$.
16. From the following table:
$x: \quad 20$
$f(x): \quad 11.4699$
25
30
35
40

Find $f(34)$ using Everett's formula.
17. Write a C program to find the value of $\int_{1}^{2} \frac{1}{x} d x$ using Simpson's $1 / 3$ rule.
18. Solve $y^{\prime}+\frac{2 x}{y}=y, y(0)=1$ in the range $0 \leq x \leq 0.2$ using modified Euler's method by taking $\mathrm{h}=0.1$.

PART - C

Answer any TWO questions:

19. Solve, by Gauss-Seidel method, the following system
a) $28 x+4 y-z=32, x+3 y+10 z=24,2 x+17 y+4 z=35$.
b) Find an iterative formula to find the reciprocal of a given number N and hence find the value of $\frac{1}{19}$.
20. a) Using Lagrange's formula, prove $y_{1}=y_{3}-0.3\left(y_{5}-y_{-3}\right)+0.2\left(y_{-3}-y_{-5}\right)$ nearly.
b) From the following table, using Stirling's formula, estimate the value of $\tan 16^{\circ}$.
$\begin{array}{ll}x: & 0^{\circ} \\ \tan x: & 0\end{array}$
5°
10°
15°
20°
25°
30°
$\tan x: 00.0875$
0.1763
0.2679
0.3640
0.4663
0.5774
21. a) Find the first and second derivative of the function tabulated below at $x=0.6$
x : $\quad 0.4$
0.5
0.6
0.7
0.8
$\mathrm{y}: 1.5836$
1.7974
2.0442
2.3275
2.6511
b) Derive Simpson's $3 / 8$ rule for numerical Integration.
22. a) Apply Simpson's $1 / 3$ rule, Compute $\int_{2}^{1.4}\left(\sin x-\log e^{x+e^{x}}\right) d x$, by taking $\mathrm{h}=0.1$.
b) Using Runge-Kutta method of IV order solve $y^{\prime}=\frac{y^{2}-x^{2}}{y^{2}+x^{2}}$ with $y(0)=1$ at $x=0.2$.
